About Online Kitchen Design
Source:- Google.com.pk
first heard about Synbiota at SXSWi this year, when they won an Accelerator Award. According to the announcement, "Synbiota is a virtual collaboration site that connects scientists, researchers, universities and others from around the world to solve complex problems using genetic engineering." That week they announced the world's first Massive Open Online Science (MOOS) event. Called #ScienceHack, hundreds of researchers from around the globe (some as clueless as us!) would use a new "wetware" kit to produce prohibitively expensive medicine at a fraction of the price.
"I'm writing to invite you to participate in #ScienceHack, our distributed science effort to make real medicine for just a fraction of current costs using Synthetic Biology and the Synbiota platform. O'Reilly Radar recently called #ScienceHack the most ambitious distributed science project, and knowing your interest in biotech, I thought I'd reach out to you with a cool opportunity to learn with us.
Participation is easy - I'll ship you one of our "Violacein Factory" wetware kits, and connect you with Kim de Mora at iGEM HQ (CC'd) who is not only interested to build one of the kits, but also has the required wet lab skills. It will take about an hour and a half for the in-silico design and build of the actual DNA part. Kim would handle the incubation etc. You would then come back to his lab in about 5 days to look at the results.
We recently built a Violacein Factory kit here in Canada, and more recently at Genspace in NYC, and everyone learned a bunch and helped us make significant advances towards our goal of an optimized violacein-producing organism.
I'll be in Boston/Cambridge on the 27th-through-30th as part of a Canadian trade delegation, and will have some time to meet you and chat about the opportunity in person if it interests you.
With regards,
Connor Dickie
http://alumni.media.mit.edu/~connord/
I knew about iGEM. It was the spinout from MIT that brought high school and college students together to hack DNA much in the same way that robot competitions bring together kids interested in robots to hack and learn and compete. What's amazing is that iGEM, now bringing together over two thousand students at their Jamboree, takes the state of the art of synthetic biology and brings it to the masses.
Violacein is a natural purple compound made by Chromobacterium violaceum, a bacteria that is found in the soil in the tropics such as the Amazon. Violacein is created by the bacteria as a natural defense against amoebic creatures that try to eat it and is viewed as a potential anti-parasitic. It also appears to show promise as a treatment for cancer. The problem is that it currently costs $356,000 per gram because of the difficulty of harvesting it in the wild.
An opportunity to learn synthetic biology through doing it (my favorite way to learn) was too good to turn down so I immediately accepted the challenge. I started by taking the required safety courses for playing with recombinant DNA : General Biosafety for Researchers, check. Bloodborne Pathogens: Researchers, check. Hepatitis Information form, check. General Chemical Hygiene (web) and Managing Hazardous Waste (web). Check and check.
Then I started hunting for a place to do the actual work. That turned out to be a bit more of a challenge. Although the kit and process provided by Synbiota were basically safe and non-toxic, work with recombinant DNA and bacteria required a proper wet lab at MIT which are in short supply and used for more important things than the Media Lab director messing around with street bio.
After discussing with the team and looking at what we needed, we decided that my kitchen would be the least disruptive place to do the work.
On July 27, the Synbiota team and Kim from iGEM gathered at my house with a rag tag team of researchers from the Media Lab and elsewhere to work on the Violacein Factory #Sciencehack. We started with a briefing on what we were actually doing.
Our mission was to be one of the hundreds of teams participating in trying to innovate on developing the most effective method of synthesizing Violacein using synthetic biology.
Scientists have determined the metabolic pathway in Chromobacterium violaceum that converts tryptophan, a common amino acid, into violacein. This pathway involves five enzymes and various genetic sequences for their production. These "parts" of genetic code can be positioned differently in the DNA molecule and each combination has different attributes and tradeoffs - the optimal sequence and combination being currently unknown
0 comments:
Post a Comment